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The Lorentz transformation

Or in matrix form
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Proper time & length

 We define the proper time, τ, as the duration measured in
the rest frame

 The length of an object in its rest frame is Lo

 As seen by an observer moving at v, the duration, T , is

And the length, L,  is
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Four-vectors

 Introduce 4-vectors, wα, with 1 time-like and 3 space-like
components (α = 0, 1, 2, 3)
 xα = (ct, x, y, z)  [Also, xα = (ct, -x, -y, -z)
 Note Latin indices i =1, 2, 3

 Norm of wα is
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Velocity, energy and momentum

 For a particle with 3-velocity v, the 4-velocity is

 The total energy, E, of a particle is its rest mass, mo, plus
kinetic energy, T

 The 4-momentum, pµ, is
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Head-on Compton scattering by
an ultra-relativistic electron

 What wavelength is the photon scattered by 180°?

E=γmc2 λout

λin
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Undulator radiation: What is λrad?

An electron in the lab oscillating at frequency, f, 
emits dipole radiation of frequency f

 f

What about the
relativistic electron?
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 Beams particles have random (thermal) ⊥ motion

 Beams must be confined against thermal expansion during
transport

Some other  characteristics of beams
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Beams have internal (self-forces)

 Space charge forces
 Like charges repel
 Like currents attract

 For a long thin beam
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Rbeam (cm)

! 

B" (gauss) =
 Ibeam (A)

5 Rbeam (cm)



US Particle Accelerator School

Net force due to transverse self-fields

In vacuum:
Beam’s transverse self-force scale as 1/γ2

 Space charge repulsion: Esp,⊥ ~ Nbeam

 Pinch field: Bθ ~ Ibeam ~  vz Nbeam ~ vz Esp

∴Fsp ,⊥ =  q (Esp,⊥ + vz x Bθ) ~ (1-v2) Nbeam ~ Nbeam/γ2

Beams in collision are not in vacuum (beam-beam effects)
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Example: Megagauss fields
in linear collider

electrons positrons

At Interaction Point space charge cancels; currents add
==>  strong beam-beam focus

--> Luminosity enhancement
--> Strong synchrotron radiation

Consider 250 GeV beams with 1 kA focused to  100 nm

Bpeak ~ 40 Mgauss
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The Basics - Mechanics
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Newton’s law

 We all know

 The 4-vector form is

 Differentiate                     with respect to τ

 The work is the rate of changing mc2
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 Motion in the presence of a linear restoring force

 It is worth noting that the simple harmonic oscillator is a
linearized example of the pendulum equation

   that governs free electron laser instability

Harmonic oscillator
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Solution to the pendulum equation

 Use energy conservation to solve the equation exactly

 Multiply     by          to get

 Integrating we find that the energy of the pendulum is conserved! 
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Stupakov: Chapter 1



US Particle Accelerator School

Non-linear forces

 Beams subject to non-linear forces are commonplace in
accelerators

 Examples include
 Space charge forces in beams with non-uniform charge

distributions
 Forces from magnets high than quadrupoles
 Electromagnetic interactions of beams with external structures

• Free Electron Lasers
• Wakefields
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Properties of harmonic oscillators

 Total energy is conserved

 If there are slow changes in m or ω, then I = U/ωo remains
invariant
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This effect is important as a diagnostic 
in measuring resonant properties of structures 
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RF-accelerators &  RF-cavities
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RF-cativties for acceleration

Microtron Synchrotron

Linac
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S-band (~3 GHz) RF linac

RF-input

RF-cavities
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Ohm's Law Generalized

 Basic approach is the Fourier analysis of a circuit

 Start with

 Instead of V = IR where the quantities are real we write

  We know this works for resistors.

V(t) = R I(t) ==> ZR is real = R

 What about capacitors & inductors?
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Impedance of Capacitors

 For a capacitor

 So our generalized Ohm’s law is

where
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Impedance of Inductors

 For a capacitor

 So our generalized Ohm’s law is

Where
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Combining impedances

 The algebraic form of Ohm's Law is preserved

==> impedances follow the same rules for combination in   
series and parallel as for resistors

 For example

 We can now solve circuits using Kirkhoff’s laws, but in
the frequency domain
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RF cativties: Basic concepts

 Fields and voltages are complex quantities.
 For standing wave structures use phasor representation

 For cavity driven externally, phase of the voltage is
θ = ωt  + θο

 For electrons v ≈ c;  therefore z = zo+ct

! 

˜ V = Ve
i"t

    where    V = ˜ V 

Zo  is the reference plane

At t = 0 particle receives maximum voltage gain
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Basic principles and concepts

 Superposition

 Energy conservation

 Orthogonality (of cavity modes)

 Causality
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Basic principles:
Reciprocity & superposition

 If you can kick the beam, the beam can kick you

==>

Total cavity voltage  =  Vgenerator+ Vbeam-induced

Fields in cavity = Egenerator+ Ebeam-induced
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Basic principles: Energy conservation

 Total energy in the particles and the cavity is conserved
 Beam loading

Ui Uf

Wc

ΔWc  = Ui - Uf 
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Basics: Orthogonality of normal modes

 Each mode in the cavity can be treated independently in
computing fields induced by a charge crossing the cavity.

 The total stored energy is equals the sum of the energies in
the separate modes.

 The total field is the phasor sum of all the individual mode
fields at any instant.
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Basic principles: Causality

 There can be no disturbance ahead of a charge moving at
the velocity of light.

 In a mode analysis of the growth of the beam-induced
field,  the field must vanish ahead of the moving charge for
each mode.
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Basic components of an RF cavity

Outer region: Large, single turn Inductor

Central region: Large plate Capacitor

Beam (Load) current

I

 B

E
Displacement current

Wall current

a

RdPower feed from rf - generator


